Economic optimization with a process-based growth model for Norway Spruce

Finnish Forest Research Institute (FFRI) Niinimäki, Tahvonen, Perttunen 2009

Background

- Growth models for Norway spruce empirical-statistical vs. process-based
- Process-based models more details, better understanding, e.g. climate change problems
- New bioeconomics very detailed ecological models integrated with economics and optimization
 - Fishery economics
 - Forestry
 - Any renewable resource

Objectives

- The main objective : incorporate a highly complex growth model with economics and optimization
- Second objective: testing the model by varying various ecological and economic parameters
- Third objective: compare these results with other studies for Norway spruce

Stand growth models

- Whole stand models (e.g. Samuelson 1976)
- Size structured models (e.g. Adams & Ek 1974, Buongiorno & Michie 1980)
- Individual tree models (e.g. Haight & al. 1985)
- Process-based stand growth models (e.g. Mäkelä & al. 1997, Hyytiäinen & al. 2006)

More complexity

The advantages of process-based models

- Detailed carbon cycle carbon from photosynthesis is divided between respiration, senescence and growth
- Causal relationships on tree structure, e.g. stem form and crown sructure
- Predicts growth in areas outside the validity of statisticalempirical models
- Can answer how changing climate and unordinary management affect growth of trees and quality of timber

PipeQual

- PipeQual is a dynamic process-based growth model for even-aged stands (Mäkelä & al. 1997)
- Initially for Scots pine
- Now for Norway spruce

State variables of the PipeQual growth model

Variable	Definition	Unit
T_{1kt}	Foliage biomass	Dry mass in kg
T_{2kt}	Fine root biomass	Dry mass in kg
T_{3kt}	Stem sapwood biomass	Dry mass in kg
T_{4kt}	Stem heartwood biomass	Dry mass in kg
T_{5kt}	Branch sapwood biomass	Dry mass in kg
T_{6kt}	Total branch biomass	Dry mass in kg
T_{7kt}	Transport root sapwood biomass	Dry mass in kg
T_{8kt}	Transport root length	m
T_{Qkt}	Crown height	m
T_{10kt}	Stem height	m
T_{11kt}	Stem diameter at breast height	m
T_{12kt}	Tree height	m
T_{13kt}	Active pipe length	m

Table 1. State variables of a mean tree

Variable	Definition	Unit
W_{lzkt}	Internode length	m
W_{27kt}	Branch sapwood area	m^2
W_{37kt}	Branch heartwood area	m^2
W_{4zkt}	Stem sapwood area	m^2
W_{5zkt}	Stem heartwood area	m^2
W_{6zkt}	State of the whorl	Dry or living
W_{7zkt}	Number of branches	Number

Table 2. State variables of a whorl

VariableDefinitionUnit B_{1dzkt} Branch thicknesscm B_{2dzkt} Compass angleDegree B_{3dzkt} Insertion angleDegree B_{4dzkt} State of the branchDry or living

Table 3. State variables of a branch

Mathematical description of the optimization problem

$$\mathbf{T}_{k,t+1} = \tau(\mathbf{T}_t, \mathbf{W}_{kt}, \mathbf{N}_t), k = 1, ..., 10, t = t_0, ..., t_m$$

$$\mathbf{W}_{r,k,t+1} = \emptyset (\mathbf{W}_{kr}, \mathbf{T}_{kr}), z = t_0, ..., t, k = 1, ..., 10, t = t_0, ..., t_m$$

$$\mathbf{B}_{dzkt+1} = \beta \ (\mathbf{B}_{dzkt}, \ \mathbf{W}_{zkt}), \ d = 0,...,5, \ z = t_0,...,t, \ k = 1,...,10, \ t = t_0,...,t_m$$

$$\mathbf{N}_{k,t+1} = \mu (\mathbf{N}_t, \mathbf{T}_{1t}, ..., \mathbf{T}_{10t}) - \mathbf{H}_t \ge 0, \ k = 1, ..., 10$$

$$N_0 = \sum_{k=1}^{10} N_{kt_0}$$

$$\gamma_{1t_i} = \frac{H_{k_1t}}{N_{k_2t}}, \ k_1 = 1, 2, 3, \ \gamma_{2t_i} = \frac{H_{k_2t}}{N_{k_2t}}, \ k_2 = 4, 5, 6, 7, \ \gamma_{3t_i} = \frac{H_{k_2t_i}}{N_{k_2t_i}}, \ k_3 = 8, 9, 10, \ t_i = t_1, ..., t_m$$

$$V_{ykt_i} = \eta \left[\mathbf{T}_{kt_i}, \mathbf{W}_{kt_i}, \mathbf{B}_{kt_i}, H_{kt_i} \right], y = 1, 2$$

$$C_{t_{i}} = \alpha \int_{i} \left[c_{cut} \left(\sum_{v=1}^{2} \sum_{k=1}^{10} V_{vkt_{i}} \right) + c_{haul} \left(\sum_{k=1}^{10} V_{1kt_{i}} + \sum_{k=1}^{10} V_{2kt_{i}} \right) \right] + C_{fbx}, i = 1, ..., m,$$

$$j = 1 \text{ (thinning) or } j = 2 \text{ (clearcut)}$$

$$S(N_0) = \sum_{a=1}^4 b^{t_a} c_a$$

$$\max_{\left[N_{0}, m, t_{i}, \gamma_{\mu_{i}}, i=1, ..., m, j=1, 2, 3\right]} BLV = \frac{\left[\sum_{i=1}^{m} b^{t_{i}} \left(\sum_{v=1}^{2} p_{v} \sum_{k=1}^{10} V_{vkt_{i}} - C_{t_{i}}\right) - S(N_{0})\right]}{1 - b^{t_{m}}} (1 - \rho),$$

$$H_{kt} \ge 0, k = 1,...,10,$$

$$t_i \le t_{i+1}, i = 1, ..., m-1$$

PipeQual model

Thinnings

Stem bucking

Harvesting cost

Regeneration cost

Objective function

The optimization methods

- Two methods were used separately and combined
- Generalized pattern search algorithm
- Genetic algorithm

Maximum sustainable yield, initial density 2300 seedlings

Low site fertility	Average site fertility	High site fertility
(H100=25)	(H100=30)	(H100=33)
MSY	MSY	MSY
9.22 m^3	12.52 m ³	13.04 m ³

Basal area development of the MSY, initial density 2300 seedlings

Maximum sustainable yield (2300 seedlings)

	Low site fertility (H100=25)		Average site fertility (H100=30)		High site fertility (H100=33)	
Interest	MSY	BLV	MSY	BLV	MSY	BLV
1%		12321 €		21106€		20132€
2%	0.22 3	1899€	10.50 3	5378€	12.04 3	5062€
3%	9.22 m^3	-317€	12.52 m^3	1286€	13.04 m^3	1154€
4%		-900€		-150€		-208€

Maximized bare land value (2300 seedlings)

	Low site fertility (H100=25)		Average site fertility (H100=30)		High site fertility (H100=33)	
Interest	Yield	BLV	Yield	BLV	Yield	BLV
1%	8.92 m ³	13495 €	12.42 m ³	21576€	12.83 m ³	22497€
2%	8.22 m^3	3166€	12.05 m ³	6500€	12.49 m ³	6883€
3%	7.54 m^3	595€	11.04 m ³	2229€	10.78 m ³	2500€
4%	6.68 m^3	-296€	10.56 m ³	597 €	10.88 m ³	839€

Economically optimal solutions, 1800 seedlings, low site fertility (H100=25)

Economically optimal solution, 1800 seedlings, average site fertility (H100=30)

Economically optimal solution, 1800 seedlings, high site fertility (H100=33)

Economically optimal thinning type, an example

(r=1%, H100=25 and initial density 2300 seedlings)

First thinning at the age of 53 years

Second thinning at the age of 73 years

Third thinning at the age of 87 years

Clear-cut at the age of 106 years

Economically optimal initial density

	1300 seedlings	1800 seedlings	2300 seedlings
1 %			Х
2 %			X
3 %		X	
4 %	X		

 $H_{100} = 25 \text{ n}$

	1300 seedlings	1800 seedlings	2300 seedlings
1 %			X
2 %			X
3 %		X	
4 %		X	

 $H_{100} = 30 \text{ m}$

	1300 seedlings	1800 seedlings	2300 seedlings
1 %			X
2 %			X
3 %			X
4 %		X	

 $H_{100} = 33 \text{ m}$

Economically optimal rotation periods, low site fertility (H100=25)

Economically optimal rotation periods, average site fertility (H100=30)

Economically optimal rotation periods, high site fertility (H100=33)

Comparison to earlier studies, r=3%, H100=25

	Hyytiäinen & Tahvonen 2001	Pukkala 2005	Hyytiäinen, Tahvonen, Valsta 2006	This study
Model	Variable density hole stand model	Individual tree model	Individual tree model	Process-based model
Optimal rotation	80 yr	70 yr	69 - 76 yr	68 - 73 yr
Average diameter	29 cm	23 cm	24 - 26 cm	22 - 23 cm

Comparison to earlier studies, r=3%, H100=30

	Valsta 1992	Hyytiäinen & Tahvonen 2001	Hyytiäinen, Tahvonen, Valsta 2006	This study
Model	Individual tree model	Variable density hole stand model	Individual tree model	Process-based model
Optimal rotation	77 yr	75 yr	61 - 65 yr	63 - 66 yr
Average diameter	23 cm	30 cm	27 - 28 cm	23 - 25 cm

Key results

- MSY decreases the income level by 2 200 %
- Initial density decreases with interest rate
- Optimal number of thinnings 2-3
- Typically optimal to thin from above
- First thinnings later than recommended
- Optimal rotation varies between 58 and 104

Conclusion

- The process-based model works reasonably well
- The model should give a reasonable basis to include various carbon cycle extensions

