Financial effects of silvicultural measures in pure spruce protection forests in the Bavarian Alps

Sebastian Höllerl, Remigius Hammerl, Thomas Knoke, Reinhard Mosandl

Institute of Silviculture
Institute of Forest Management
29. October 2009
Pure spruce stands in the montane zone

Natural vegetation: Mixed mountain forests

- Picea abies: Norway spruce
- Fagus silvatica: Beech
- Abies alba: Fir
- Acer pseudoplatanus: Maple

Picture: Mosandl
Dilemma and Hypothesis

Research in spruce stands showed a dilemma:

- Stabilizing interventions have to be done early (thinning, conversion to mixed stands).
- Harvesting methods in the mountains are often expensive (cable yarding uphill or downhill) especially when interventions are done early.
- Foresters often wait with interventions until trees are big enough to earn money (but that is too late for stabilizing).
- Foresters don’t calculate with interest rates and risks.

Hypothesis for financial investigation:

- h_0: Silvicultural measures for stabilizing mountain forests do not create a financial benefit, even if you take in consideration interest rates and risks.
Material & Methods

- Financial comparison of two scenarios: “treated” and „untreated“ stands
- Growth series of 18 stands in the alps
- Untreated scenario: planting and (hypothetical) harvesting at age 100
- Treated scenario: plus silvicultural measures at age 40, 60 and 80
Material and Methods (continued)

- Valuation of stands using current timber prices
- Valuation of harvesting considering six different harvesting methods: (“harvester”, “combined”, “skidder”, “full-tree logging”, “cable yarding uphill” and “cable yarding downhill”)
- Calculation of contribution margins for scenario “treated” and “untreated”
- Calculation of net present values (interest rate 2%)
- Integration of risks in calculations using Monte-Carlo-Simulation:
 - Volatility of timber prices:
 Statistic of prices in 30 years
 Bavarian timber market
 (“Bayerische Staatsforstverwaltung”) (BEINHOFER 2007)
 - Calamities (snow, storm, insects):
 Survival probabilities
 (moderate and higher risk)

![Graph showing survival probability over age](image)
Methods to consider risk

- **Monte-Carlo-Simulation (5000 times)**
 Risks: Volatility of timber prices and hazards (snow, storm, insects)
 In case of hazard: reduction of timber price by 50%
 Result: Frequency distributions, mean values, variance

- **Mean-variance-approach:**
 Certainty equivalent = Mean – reduction for risk

\[
CE(Z) = M(Z) - \alpha \cdot \frac{\sigma_z^2}{2}
\]

- $CE(Z)$ = Certainty equivalent
- $M(Z)$ = Mean
- σ_z^2 = Variance
- α = Factor of risk aversion
 - $a/\text{investment}$ (SPREMANN 1996)
- a = personal factor of risk aversion
 - 1 = normal, 2 = high risk aversion
Methods to consider risk

- **Stochastic Dominance**
 (1. Order, FSD)

 Option „treated“ (T) dominates Option „untreated“ (U), if:

 \[T(y) \leq U(y) \text{ for all } y \]
 \[T(y) < U(y) \text{ for some } y \]

- **Stochastic Dominance**
 (2. Order, SSD)

 Option „treated“ (T) dominates Option „untreated“ (U), if:

 \[\int_{-\infty}^{x} U(t) - \int_{-\infty}^{x} T(t) \geq 0 \text{ for all } y \]
 \[\int_{-\infty}^{x} U(t) - \int_{-\infty}^{x} T(t) > 0 \text{ for at least one } y \]
Which effects do we expect from interventions?

- Stabilizing effect (not calculated)
- Early revenues/expenses in treated stands
- Reduced variance of net present values in treated stands
- Natural regeneration in treated stands
- Also expenses in „untreated“ stands after hazards
Results
Results

- Differences of contribution margins: treated-untreated
 - Example Harvester:
 - treated: CM = 46 048 €
 - untreated: CM = 40 207 €
 - Difference: = 5 841 €

 Difference above zero: treatment is profitable.

- Consideration of natural regeneration:
 - Differences of net present values: treated-untreated
 - In treated scenario mixed natural regeneration grows. That saves money for conversion of the spruce stands into mixed stands.
 - Assumed amount of saved money:
 \[CE(Z) = M(Z) - \alpha \cdot \frac{\sigma^2}{2} \]
 \[3 000 \text{,-} \, € \]
Results of stochastic dominance (SSD)
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Moderate Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>SSD</td>
</tr>
<tr>
<td></td>
<td>Mean variance</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>variance</td>
</tr>
<tr>
<td></td>
<td>risk aversion</td>
<td>high risk</td>
</tr>
<tr>
<td></td>
<td>aversion</td>
<td>aversion</td>
</tr>
</tbody>
</table>

Hypothesis:

\(h_0 \): Silvicultural measures for stabilizing mountain forests do not create a financial benefit, even if you take in consideration interest rates and risks.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mild Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvester</td>
<td>T</td>
<td>X</td>
</tr>
<tr>
<td>Combined</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Skidder</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Full-tree</td>
<td>X</td>
<td>T</td>
</tr>
<tr>
<td>Cable uphill</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cab. downhill</td>
<td>X</td>
<td>U</td>
</tr>
</tbody>
</table>

Legend:

- T = treated dominates, that means treatment is financial advantageous and \(h_0 \) is rejected,
- U = untreated dominates, X = no decision possible
Conclusions

In most situations treatment is financial advantageous because of:

- Early revenues in treated stands (compensate reduced volume at final harvest)
- Natural regeneration in treated stands
- Reduced variance of net present values in treated stands
- Also expenses in „untreated“ stands after hazards
Decision-making process based on financial aspects without considering risks can be misleading.

But taking the risks into account, often measures that are desirable from a silvicultural point of view can also be justified financially.
Validation of tending measures

- Tending measures normally result in negative contribution margins
- But when stands become more stable by tending, later less trees are affected by hazards: that can be a financial advantage
- Question: How strong must be stabilizing effects of tending measures to make these measures profitable?
Validation of tending measures

- Approach: change of survival probabilities
 - Step-by-step Increase of survival probabilities in Monte-Carlo-Simulation
 - Comparision of certainty equivalents in treated stands with and without tending

- At which point of increase of survival probability is the certainty equivalent with tending higher than the certainty equivalent without tending?
Result:

![Graph showing reduction of probability for hazard and difference of certainty equivalents.](image)

Graph Description:
- **Moderate risk**
- **Risk aversion: normal**
- Different lines represent different machine types:
 - Harvester
 - Combined
 - Full-tree
 - Skidder
 - Cable uphill
 - Cab. downhill
- Linear models for each machine type are also shown.

Conclusion:
- The probability of breakdown must be decreased by $\frac{1}{4} - \frac{1}{3}$.
- Then tending measures become profitable.

New question:
- Is that realistic?

No proof but a hint:
- Comparision of increased survival probability with probabilities in KNOKE and SEIFERT (2008).
Eingangswerte: Auszahlungen

<table>
<thead>
<tr>
<th>Sortiment</th>
<th>Harvester</th>
<th>Kombiniert</th>
<th>Schlepper</th>
<th>Vollbaum</th>
<th>Seil bergauf</th>
<th>Seil bergab</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL/IS</td>
<td>25</td>
<td>32</td>
<td>47</td>
<td>70</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>1a</td>
<td>17</td>
<td>32</td>
<td>47</td>
<td>70</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>1b</td>
<td>17</td>
<td>32</td>
<td>42</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>2a</td>
<td>14</td>
<td>25</td>
<td>36</td>
<td>30</td>
<td>50</td>
<td>57</td>
</tr>
<tr>
<td>2b</td>
<td>14</td>
<td>25</td>
<td>31</td>
<td>30</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>3a</td>
<td>14</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>3b</td>
<td>12</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>4a</td>
<td>12</td>
<td>22</td>
<td>23</td>
<td>28</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>4b</td>
<td>12</td>
<td>22</td>
<td>21</td>
<td>26</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>5a</td>
<td>12</td>
<td>22</td>
<td>19</td>
<td>26</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>5b</td>
<td>12</td>
<td>22</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandesbegründung</td>
<td>2700,- €/ha</td>
<td>235,- €/ha</td>
</tr>
<tr>
<td>Jugendpflege</td>
<td>650,- €/ha</td>
<td>347,- €/ha</td>
</tr>
</tbody>
</table>
Eingangswerte: Holzpreise

<table>
<thead>
<tr>
<th>Sortimente</th>
<th>Erlöse ohne MwSt., Originalwerte</th>
<th>Mittlere Erlöse ohne MwSt., D-Holz-Anteil eingerechnet</th>
<th>Güteklassse</th>
<th>Stammholz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fi-SL-B/C-1a</td>
<td>41 €</td>
<td>41 €</td>
<td>B/C-Qualität</td>
<td>78%</td>
</tr>
<tr>
<td>Fi-SL-B/C-1b</td>
<td>62 €</td>
<td>60 €</td>
<td>D-Qualität</td>
<td>22%</td>
</tr>
<tr>
<td>Fi-SL-B/C-2a</td>
<td>72 €</td>
<td>68 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-2b</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-3a</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-3b</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-4a</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-4b</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-B/C-5+</td>
<td>75 €</td>
<td>71 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-SL-D</td>
<td>55 €</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi-IL-N</td>
<td>35 €</td>
<td></td>
<td>IL-N</td>
<td>50%</td>
</tr>
<tr>
<td>Fi-IL-F/K</td>
<td>30 €</td>
<td></td>
<td>IL-F/K</td>
<td>50%</td>
</tr>
</tbody>
</table>